Duan Research Group

Hetero-integrated Nanostructures and Nanodevices


Metal–semiconductor transition in atomically thin Bi2Sr2Co2O8 nanosheets

Y. Wang, R. Cheng, J. Dong, Y. Liu, H. Zhou, W. J. Yu, I. Terasaki, Y. Huang and X. Duan

APL Mat. 2, 092507 (2014)

Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered Bi2Sr2Co2O8 (BSCO) can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH) conduction throughout 2 K–300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu