Duan Research Group

Hetero-integrated Nanostructures and Nanodevices

FrontSlideshow

Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.
Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.

Welcome to the Duan Lab webpage!

Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.
Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.

News:

  • A new mechanically strong, double-pane ceramic aerogel made from hexagonal boron nitride that is resistant to high temperatures could be used in aerospace and industrial applications. The material, which boasts both a negative Poisson’s ratio and a negative thermal expansion coefficient, is very different to typical ceramic aerogels that are brittle and structurally degrade under thermal shocks.

  • Six faculty members from UCLA have been selected as 2018 fellows of the American Association for the Advancement of Science. They are to be honored by the association for their scientifically or socially distinguished efforts to advance science or its applications.

  • Five UCLA Chemistry & Biochemistry faculty are among the most influential scientists in their fields for 2018, as determined by Clarivate Analytics.

  • Researchers at the University of California, Los Angeles (UCLA), the University of Texas at Austin, and Hunan University (China) have recently devised a new method of preparing highly uniform, solution-processable, phase-pure semiconducting nanosheets. Their approach, outlined in a paper published in Nature, involves the electrochemical intercalation of quaternary ammonium molecules into 2-D crystals, followed by a mild sonication and exfoliation process.

  • The team reported on a new on-chip "tool" that helps to "see" & identify the key process that hinders the performance of catalyst used in fuel cells. The tool will help scientists find respective solutions more efficiently.

    The work was led by Xiangfeng Duan, a UCLA professor of chemistry and biochemistry, and Yu Huang, a UCLA professor of materials science and engineering.

    The lead author of the study is Mengning Ding (pictured right), a former UCLA CNSI postdoctoral fellow advised by Huang and Duan, now a professor of chemistry at Nanjing University, China. Other study authors are UCLA graduate students and postdoctoral researchers in Duan and Huang’s research groups and researchers from King Saud University, Saudi Arabia.

UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu