Duan Research Group

Hetero-integrated Nanostructures and Nanodevices

Welcome to the Duan Lab webpage!

Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.
Using two-dimensional layered materials and their heterostructures, we are pushing the electronic and photonic devices towards the ultimate limit of single atomic layer, creating a new generation of devices with unprecedented performance, unique functions and/or extraordinary flexibility.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Through rational design and nanoscale eintegration of highly distinct materials and functions (e.g., light harvesting, charge transport, or catalytic capabilities), we are creating new material systems for highly efficient energy harvesting, conversion and storage.
With comparable size to functional biological building blocks, nanoscale systems are ideally suited for interfacing with biological systems. We are designing nanoscale electrical and optical systems that can greatly expand our capability in probing, imaging, monitoring, and manipulating biological processes with unprecedented resolution, sensitivity and precision.
Combining chemical synthesis and physical assembly approaches, we are developing powerful strategies for the hetero-integration of multi-composition, multi-structure and multi-function at the nanoscale, and by doing so, creating a new generation of integrated materials and nanosystems with unprecedented performance or unique functions to break the boundaries of traditional technologies.

News:

  • Thirty UCLA faculty members are among the most influential researchers in their fields for 2017, as determined by Claritive Analytics. The organization compiled its 2017 Highly Cited Researchers list of more than 3,000 scientists from around the world whose studies were among the top 1 percent most referenced in studies from their field. (Read more about the rankings methodology.)

    From http://newsroom.ucla.edu/

  • A research team led by UCLA scientists and engineers has developed a method to make new kinds of artificial “superlattices” — materials comprised of alternating layers of ultra-thin “two-dimensional” sheets, which are only one or a few atoms thick. Unlike current state-of-the art superlattices, in which alternating layers have similar atomic structures, and thus similar electronic properties, these alternating layers can have radically different structures, properties and functions, something not previously available.

    From http://newsroom.ucla.edu

  • Researchers in the US and Saudi Arabia are the first to have observed negative transconductance (NTC) inside multilayer molybdenum-disulphide (MoS2) transistors with optimized graphene/metal hybrid contacts. The NTC behaviour comes about thanks to competition between inter-layer charge transport and charge transport through a vertical potential barrier in the MoS2. This unique effect could be exploited for making frequency doublers and phase-shift keying circuits with only one multilayer transistor – something that would greatly simplify circuit design compared to conventional technology, says the team.

    From nanotechweb.org

  • An international team led by researchers at UCLA and Caltech has demonstrated how altering the form of platinum nanoscale wires from a smooth surface to a jagged one could dramatically reduce the amount of precious metal used as catalysts in fuel cells and lower the cost.

    From newsroom.ucla.edu

  • Researchers at UCLA’s California NanoSystems Institute have developed a dramatically advanced tool for analyzing how chemicals called nanocatalysts convert chemical reactions into electricity. Current spectroscopy methods require large laboratory machines to measure chemical reactions, but the new technique uses a nanoelectronic chip to do the same thing while the reactions are taking place — which previously was very difficult — with better accuracy, and while gathering a completely new set of data.

    From newsroom.ucla.edu

UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu