Duan Research Group

Hetero-integrated Nanostructures and Nanodevices


A molecular cross-linking approach for hybrid metal oxides

Dahee Jung, Liban MA Saleh, Zachariah J Berkson, Maher F El-Kady, Jee Youn Hwang, Nahla Mohamed, Alex I Wixtrom, Ekaterina Titarenko, Yanwu Shao, Kassandra McCarthy, Jian Guo, Ignacio B Martini, Stephan Kraemer, Evan C Wegener, Philippe Saint-Cricq, Bastian Ruehle, Ryan R Langeslay, Massimiliano Delferro, Jonathan L Brosmer, Christopher H Hendon, Marcus Gallagher-Jones, Jose Rodriguez, Karena W Chapman, Jeffrey T Miller, Xiangfeng Duan, Richard B Kaner, Jeffrey I Zink, Bradley F Chmelka, Alexander M Spokoyny

Nat. Mater. 17, 341-348 (2018)

There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as ‘molecular cross-linking’, whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2–. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu