Duan Research Group

Hetero-integrated Nanostructures and Nanodevices

Publications

Nanowire thin-film transistors: a new avenue to high-performance macroelectronics

X. Duan

IEEE Trans. on Electron Dev. 55, 3056-3062 (2008)

The recent efforts in exploiting semiconductor nanowires (NWs) for high-performance macroelectronics are reviewed. In brief, a new concept of NW thin-film transistors (NW-TFTs) has been proposed and demonstrated from oriented semiconductor NW thin films. In NW-TFTs, the source and drain electrodes are bridged by multiple single-crystal NWs in parallel. Therefore, charges travel from source to drain within single crystals, ensuring high carrier mobility. Recent studies have shown that high-performance NW-TFTs and high-frequency circuits can be produced from silicon NWs on a variety of substrates, including glass and plastics, using a solution assembly process. The device performance of these NW-TFTs not only greatly surpasses that of solution-processed organic TFTs but is also significantly better than that of conventional amorphous or polycrystalline silicon TFTs, approaching single-crystal silicon-based devices. Furthermore, with a similar framework, group III-V or II-VI NW or nanoribbon materials of high intrinsic carrier mobility or optical functionality can be assembled into thin films on flexible substrates to enable new multifunctional electronics/optoelectronics that are not possible with traditional macroelectronics. This approach thus opens a new avenue to high-performance flexible macroelectronics and will not only impact existing applications but also enable a whole new generation of flexible, wearable, or disposable electronics for computing, storage, and wireless communication.
UCLA, Department of Chemistry and Biochemistry
607 Charles E. Young Drive East, Box 951569
Los Angeles, CA 90095-1569
E-mail: xduan@chem.ucla.edu